问题252: 求 lim 2sinx+cosx−2x−1/∫cost^2dt
求 $\lim _{x \rightarrow 0} \frac{2 \sin x+\cos x-2 x-1}{\int_0^{x^2} \cos t^2 d t}$.
$$ \begin{aligned} & \lim _{x \rightarrow 0} \frac{2 \sin x+\cos x-2 x-1}{\int_0^{x^2} \cos t^2 d t} \\ = & \lim _{x \rightarrow 0} \frac{2 \cos x-\sin x-2}{2 x \cos x^4} \\ = & \lim _{x \rightarrow 0} \frac{2 \cos x-\sin x-2}{2 x} \\ = & \lim _{x \rightarrow 0} \frac{-2 \sin x-\cos x}{2} \\ = & -\frac{1}{2} \end{aligned} $$
添加微信可以更快获取解答(请注明有偿答疑)
最后修改于2024年04月05日
前一篇:问题251: 3√c^2d^3e×c^1/3d^2e^2/3/(c^−3d^2e)^2